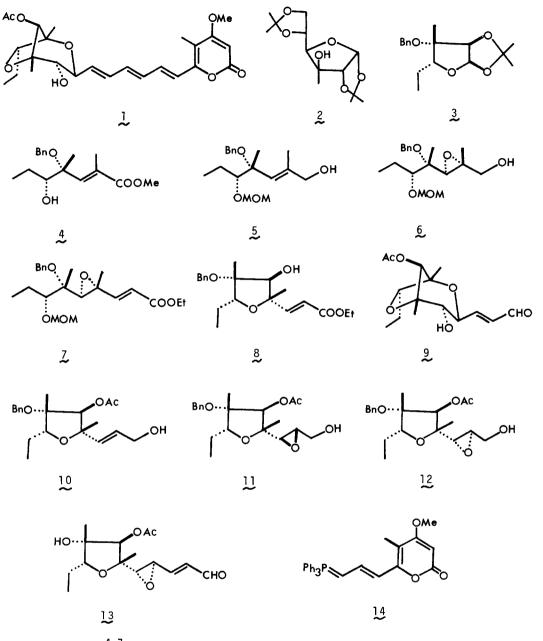
Tetrahedron Letters, Vol.27, No.31, pp 3643-3646, 1986 Printed in Great Britain

0040-4039/86 \$3.00 + .00 Pergamon Journals Ltd.

TOTAL SYNTHESIS AND THE ABSOLUTE CONFIGURATION OF AUROVERTIN B

Shigeru Nishiyama, Hiroaki Toshima, Hiroki Kanai, and Shosuke Yamamura* Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama, Japan


<u>Summary</u>: Aurovertin B, a metabolite of <u>Calcarisporium</u> <u>arbuscula</u>, has been synthesized starting from D-glucose, in connection with which, its absolute configuration has been unambiguously determined.

In connection with citreoviridin, citreoviridinol and related mycotoxins,¹ we herein describe a total synthesis of aurovertin B (1),² a potent inhibitor of ATP-synthesis and ATP-hydrolysis catalyzed by mitochondrial enzyme system, starting from D-glucose. In addition, the absolute configuration of aurovertin B has been unambiguously established as <u>1</u>.

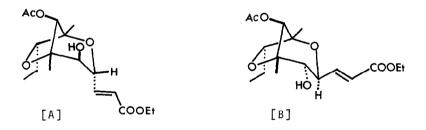
The known diketal (2),³ which was derived from D-glucose, was readily converted into the corresponding monoketal $(3)^4$ in 5 steps [1] BnBr - NaH in DMF (0 °C - room temp., 1.5 h), 2) 1% aq.H₂SO₄ in MeOH (room temp., 2 days), 3) MsCl - pyridine in CH₂Cl₂ (0 °C - room temp., 6 h), 4) NaI in MeCOEt (refluxing temp., 18 h), 5) $\rm H_2/10\%$ Pd-C in MeOH (room temp., 18 h), 90% overall yield from 2]. This ketal (3) was further converted into an \checkmark , ϑ -unsaturated ester (4),⁴ in 4 steps [1) 80% aq.AcOH ($\widetilde{80}$ °C, 20 h), 2) NaIO₄ (1.5 equiv.) in MeOH - H₂O (1 : 1) (room temp., 1 h), 3) $Ph_3P=C(Me)COOMe$ in benzene (refluxing temp., 20 h), 4) K_2CO_3 (1 equiv.) in MeOH (room temp., 30 min), 81% overall yield from 3], which was treated with $CH_2(OMe)_2 - P_2O_5$ in CHCl₃ (room temp., 1 h) and then with diisobutylaluminium hydride (4.5 equiv.) in THF (-78 °C, 1.5 h) to afford an allyl alcohol (5), 4,5 in 93% yield. On treatment with <u>m</u>-chloroperbenzoic acid (1.2 equiv.) in CH_2CI_2 (-35 - -20 °C, 25 h), 5 was stereoselectively⁶ converted into a desired epoxide (6),⁴ in 90% yield, which was further subjected to Swern oxidation [(COC1)₂ (1.5 equiv.) - DMSO (3.0 equiv.) - Et_3N (5 equiv.) in CH₂Cl₂ (-50 °C, 15 min)] followed by Wittig reaction [Ph₃P=CHCOOEt in benzene (room temp., 2 h)] to afford an \measuredangle, β -unsaturated ester (7), 4 in 93% yield. Then, stereospecific cyclization of $\frac{7}{2}$ was carried out using CF₃COOH in CHCl₃ (room temp., 10 min) to give rise to a desired tetrahydrofuran $(8)^4$ in 94% yield.

In the next step, a 2,6-dioxabicyclo[3.2.1]octane (9) accommodated in the structure of aurovertin B (1) was synthesized in regio- and stereospecific manner, as follows.

The tetrahydrofuran (8) so far obtained was readily converted into an allyl alcohol $(10)^4$ in 4 steps [1) DIBAL-H in THF (-78 °C, 1 h), 2) Trityl chloride - pyridine in CH_2Cl_2 (room temp., 22 h), 3) Ac_2O in pyridine (room temp., 2.5 h), 4) <u>p</u>-TsOH in MeOH (room temp., 1 h), 87% overall yield from 8]. On treatment of 10 with <u>m</u>-chloroperbenzoic acid (1.2 equiv.) in CH_2Cl_2 (0 °C - room temp., 1 day), an undesired epoxide (11)^{4,7} was obtained in 91% yield. As expected, however, epoxidation of 10 was carried out under Sharpless condition [Ti(OPr¹)₄ (1.4 equiv.) - D-(-)-DET (1.4 equiv.) - TBHP (3.3 equiv.) in CH_2Cl_2 (-20 °C, 12 h)]⁸ to afford

a desired epoxide $(12)^{4,7}$ in 99% yield. Furthermore, this epoxide (12) was subjected to catalytic hydrogenation $[H_2/Pd$ black in MeOH (room temp., 30 min)] followed successively by Swern oxidation $[(COC1)_2 (1.5 \text{ equiv.}) - DMSO (3.0 \text{ equiv.}) - Et_3N (5.0 \text{ equiv.}) in CH_2Cl_2 (-50 °C, 15 min)], Wittig reaction [Ph_3P=CHCHO in benzene (room temp., 1.5 h)] giving an <math>\mu$, β -unsaturated aldehyde (13),4 and then stereospecific cyclization using camphorsulfonic acid in CH_2Cl_2 (room temp., 3 h) to afford a desired 2,6-dioxabicyclo[3.2.1]octane (9),⁴ in 50% overall yield from 12.

Finally, when treated with a triphenylphosphorane $(14)^9$ in THF (0 °C - refluxing temp., 45 h),¹⁰ the \checkmark , β -unsaturated aldehyde (9) was successfully converted into the corresponding condensation product, in 22% yield, which was identical with natural aurovertin B (1) in all respects of spectral data.¹ Particularly, the optical rotation of the synthetic sample $([\checkmark]_D^{27}$ -57.9° (c 0.125, EtOH)) is in a good agreement with that of natural aurovertin B (1) $([\checkmark]_D^{20}$ -50.6° (EtOH)),¹ indicating that the absolute configuration of aurovertin B is the same as that of citreoviridin which has been already synthesized from D-glucose.⁹


This research has been supported in part by grants from the Ministry of Education, Science and Culture, to which grateful acknowledgment is made.

References and Notes

- S. Nishiyama, Y. Shizuri, D. Imai, S. Yamamura, Y. Terada, M. Niwa, K. Kawai, and H. Furukawa, Tetrahedron Lett., 26, 3234 (1985) and references cited therein.
- L. J. Mulheirn, R. B. Beechey, and D. P. Leworthy, J. Chem. Soc., Chem. Commun., <u>1974</u>, 874.
- 3. M. Funabashi, H. Sato, and J. Yoshimura, Bull. Chem. Soc. Jpn., <u>49</u>, 788 (1976).
- 4. The spectral data for the new compounds were in accord with the structures assigned, and only selected data are cited: 3: C17H2404 [m/z 277.1438(M⁺ - Me)]; \$(CDC13) 1.05(3H, t, J= 7.5Hz), 1.70(2H, m), 4.55(2H, s), and 7.31(5H, br.s). 4: C₁₇H₂₄O₄ [m/z 293.1725 $(M^{+} + 1)$]; IR (film) 3500, 1710, and 1640 cm⁻¹; **S**(CDCl₃) 1.02(3H, t, J= 7.5Hz), 1.40 (2H, m), 1.42(3H, s), 2.05(3H, d, J= 1Hz), 3.66(1H, m), 3.78(3H, s), 4.30(1H, d, J= 11Hz), 4.43(1H, d, J= 11Hz), 5.59(1H, q, J= 1Hz), and 7.33(5H, br.s). 5: C₁₈H₂₈O₄ [m/z 277.1802 (M⁺ - OMe)]; IR (film) 3450 cm⁻¹; **\$**(CDCl₃) 1.82(3H, s), 3.98(2H, br.s), and 5.31(1H, br.s). 6: $C_{18}H_{28}O_5$ [m/z 325.1982(M⁺ + 1)]; 5 (CDC1₃) 1.29(3H, s) and 3.25(1H, s). 7: $C_{22}H_{32}O_{6}$ [m/z 347.1857(M⁺ - OEt)]; IR (film) 1720 and 1650 cm⁻¹; δ (CDCl₃) 1.28(3H, t, J = 7.5Hz, 4.18(2H, q, J = 7.5Hz), 6.01(1H, d, J = 16Hz), and 6.80(1H, d, J = 16Hz). 8; $C_{20}H_{28}O_5$ [m/z 348.1935(M⁺)]; IR (film) 3460 and 1710 cm⁻¹; \boldsymbol{S} (CDCl₃) 3.73(1H, d, J= 4.5, 7.5Hz), 4.08(2H, q, J= 7.5Hz), and <u>ca</u>. 4.1(1H, overlapped with the quartet at \S 4.08). 9: mp 138 - 140 °C; C₁₅H₂₂O₆ [m/z 298.1425(M⁺)]; [∡]²⁶_D -45.8° (c 1.06, CHCl₃); IR (film) $\tilde{\mathbf{x}}$ 3450, 1740, and 1690 cm⁻¹; $\boldsymbol{\delta}$ (CDC1₃) 1.07(3H, t, J= 7.5Hz), 1.19(3H, s), 1.26(3H, s), 1.62(2H, m), 2.16(3H, s), 3.33(1H, dd, J= 8, 11Hz), 3.93(1H, t, J= 7Hz), 4.32(1H, m), 4.76(1H, s), 6.40(1H, ddd, J= 1.5, 8, 15.5Hz), 6.97(1H, dd, J= 4, 15.5Hz), and 9.60(1H, d, J= 8Hz). 10: C₂₀H₂₈0₅ [m/z 348.1915(M⁺)]; IR (film) 3450 and 1740 cm⁻¹; **\$** (CDC1₃) 2.14(3H, s) and 5.34(1H, s). 11: $C_{20}H_{28}O_6$ [m/z 364.1846(M⁺)]; δ (CDC1₃) 3.00(1H, m), 3.20(1H, d, J= 2Hz), and 3.3 - 3.8(3H, complex). 12: C₂₀H₂₈O₆ [m/z 364.1867(M⁺)]; IR (film) 3450 and 1740 cm⁻¹; **S** (CDCl₃) 3.09(1H, d, J= 2Hz), 3.25(2H, m), and 3.4 - 3.7(2H, complex). The compound (13) has not yet been obtained in completely pure state, but its structure is supported by the following ¹H NMR spectral data: $\mathcal{S}(\text{CDCl}_3)$ 1.01(3H, t, J= 7.5Hz), 1.17(3H, s), 1.20(3H, s), 1.40 - 1.75(2H, complex), 2.13(3H, s), 3.19(1H, d, J= 2.5Hz), 3.53(1H, dd, J= 6, 8Hz), 3.89(1H, dd, J= 2.5, 6Hz), 4.74(1H, s), 6.39(1H, dd, J= 6, 16.5Hz), 6.60(1H, dd, J= 6, 16.5Hz), and 9.60(1H, d, J= 6Hz).
- 5. This compound (5) can be produced from methyl cis-2-methyl-2-pentenoate according to essentially the same procedure as that of citreoviral: Y. Shizuri, S. Nishiyama, H. Shigemori, and S. Yamamura, 50th Annual Meeting of the Chemical Society of Japan, Tokyo, April

1985, Abstract Papers II, p. 874; M. C. Bowden, P. Patel, and G. Pattenden, Tetrahedron Lett., <u>26</u>, 4793 (1985); S. Hatakeyama, Y. Matsui, M. Suzuki, K. Sakurai, and S. Takano, <u>ibid.</u>, <u>26</u>, 6485 (1985).

- 6. M. R. Johnson and Y. Kishi, Tetrahedron Lett., <u>1979</u>, 4347; S. Hatakeyama, Y. Matsui,
 M. Suzuki, K. Sakurai, and S. Takano, <u>ibid.</u>, <u>26</u>, 6485 (1985).
- 7. Both epoxides (11 and 12) have been readily converted into the corresponding 2,6-dioxabicyclo[3.2.1]octanes [A] and [B], respectively, in regio- and stereospecific manner [1) H₂/Pd black in MeOH, 2) Swern oxidation, 3) Wittig reaction using Ph₃P=CHCOOEt, 4) p-TsOH in benzene]. Their structures have been supported by the following spectral data: [A]: C₁₇H₂₆O₇ [m/z 342.1654(M⁺)]; IR (film) 3500, 1740, 1720, and 1640 cm⁻¹; **\$** (CDCl₃) 0.98(3H, t, J= 7.5Hz), 1.18(3H, s), 1.23(3H, s), 1.27(3H, t, J= 7.5Hz), 1.53(2H, m), 2.14 (3H, s), 3.60(2H, complex), 4.19(2H, q, J= 7.5Hz), 4.22(1H, m), 5.50(1H, s), 6.10(1H, dd, J= 2, 17Hz), and 6.98(1H, dd, J= 5, 17Hz). [B]: C₁₇H₂₆O₇ [m/z 342.1661(M⁺)]; IR (film) 3500, 1740, 1720, and 1640 cm⁻¹; **\$** (CDCl₃) 1.05(3H, t, J= 7.5Hz), 1.17(3H, s), 1.24(3H, s), 1.27(3H, t, J= 7.5Hz), 1.61(2H, m), 2.15(3H, s), 3.28(1H, dd, J= 8.5, 10Hz), 3.92 (1H, t, J= 6.5Hz), 4.19(2H, q, J= 7.5Hz), 4.20(1H, m), 4.74(1H, s), 6.13(1H, dd, J= 2, 16Hz), and 7.07(1H, dd, J= 4.5, 16Hz).

8. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., <u>102</u>, 5974 (1980).
 9. S. Nishiyama, Y. Shizuri, and S. Yamamura, Tetrahedron Lett., <u>26</u>, 231 (1985).
 10. The reaction condition for this Wittig reaction is not always optimum.

(Received in Japan 28 May 1986)